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One parameter families of transformations of the configurational space are
considered, and possible displacements compatible with the constraints im-
posed on the system, introduced, The D*Alembert—Lagrange principle is
applied to these displacements to obtain assertions generalizing the funda -
mental theorems of dynamics and extending the Noether's theorem to a system
with nonholonomic constraints, The assertions proved in the paper are used to
solve a problem of motion of a sharp-edged homogeneous disc on a horizontal
ice surface,

1. Generalization of the fundamental theorems of dynamics, Let us consider a
mechanical system of 72 material points of masses m; the Cartesian coordinates of
which are x;, y;, 2;. We assume that the system is under linear constraints which
are, in general , nonintegrable, Then the possible displacements of the system satisfy
the relations

Z (@;36x; + biby; + ¢;;02;,) =0, i=1,..., m<I3n (1.1)

1=1

where the coefficients are functions of the coordinates and time, The points m; are
acted upon by the active forces F, whose projections on the coordinate axes are X,
Y;, Z;. The actual motions can be found from the D'Alembert — Lagrange principle

- d%, dy, (1.2)
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Let us consider the time - and parameter o -dependentfamily of reversible trans-
formations of a 3n -dimensional configurational space

7 ¢ ? ’
r=r@ 'z, oz Y 2 @) (1.3)

1, = {&;, Yir 23}
The velocities of the points of the system are transformed in accordance with the ac-

cepted rule n , , . ,

dr, _ or, 4 or, dz; 4 or, dy; L or, dz; (L.4)
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as the possible displacements of the system, connected with the family of transfor-
mations (1,3), We shall say that the family of transformations (1, 3) is compatible
with the constraints (1,1) if the possible transformations (1, 5) satisfy the constraint
equations (1,1),

Lemma 1, We have the following relation:
n

Z (m d?z; Oz, d%y, oy, d%, 0z; ) as aT (1.6)

i 3E e T M aE 7a T Miam B0,

=) dt da
N/ oor oz, aT 6y aT 9z,

S = ;(az aa,+ay +3z 73_6.—)

T=Y 1@+ @+ @)
i=1

(where T is the kinetic energy ), The validity of this identity follows from the
permutation relations:
d or; 8 adr,

dt aa. da dt

Lemma 2, If the family (1,3) is compatible with the constraints placed on the
system, then

%—f— Z 2 Z( 1 aa +Y1 ayi + 2 aa‘) (L.7)

t=1

We prove this relation by substituting the possible displacements ( 1,5) into the
D*Alembert —Lagrange equations and applying the formula (1,6),

The function f (£, Z;, Y1, 219 « - «» Z1's Yi'» 21, -..) is invariant under the trans-
formations (1, 3 ) provided that the function g obtained from f by changing the co-
ordinates and velocities of the points in accordance with (1,3) and (1. 4), is indepen-
dent of «a.

Theorem 1, If the kinetic energy is invariant under the property of transfor -
mations (1,3 ) compatible with the constraints, then

dS/dt = 3 (1.8)

Since the kinetic energy is invariant under the family of transformations (1,3),
0T / 6o = 0 and (1,8) follows from (1.7).

The kinetic energy is invariant under the displacements along a fixed directionand
rotations about a fixed axis., Consequently, in these cases Theorem 1 coincides with
the classical theorems on the change of momentum and moment of momentum of the
system [1],

2. The case of potential forces. We assume that the external forces F; acting
on the system admit the force function V (£, Z1, Y15 215 o+ Tny Yns 2a)-

Theorem 2, If the function L = T -4 V isinvariant under the family of
transformations (1, 3 ) together with the constraints, the equations of motion have the

first integral S = const



28 V. V.Kozlov and N,N, Kolesnikov

This assertion follows from the forrnulas (1, 7), and we make use of the formula

2 = dV/oa
and the invariance of the function [, = 7 + V: 3L / da = 0.

When the constraints are nonholonomic, Theorem 2 becomes identical with the
Noether's theorem [2], We stress that the family of transformations (1, 3 ) need not be
a group,

3. Generalization of the theorems on determination of momentumn and moment
of momentum, In this section we show when the kinetic energy is invariant under the
displacements along the straight line ! defined by the direction cosines a, b, ¢, which
can change its direction with time, Obviously, in this case the transformation formulas are

l',--::ri'-i—al, l=(a,b,c)

It can be verified that
n

0T  da dz; B\ W de N 4
o= e Y
i==1 i=1 i=1
In this case the condition of invariance of I' relative to the family of displacements
are written in the form (P, dl / dt) = O where P is the vector of the momentum
of the system, If the above relation holds and the constraints allow a translational dis-
placement of the system along the [ -axis as a single rigid body, then according to

Theorem 1 we have n
¢ P — E F 3. 1)
7 ( ’ l) = ( i l) (

i=1

We shall also show when the kinetic energy is invariant relative to rotation about
the [ ~axis which is, in general, movable, Once again we denote its direction co -
sines by a, b, ¢ and allow ¢ to pass through the coordinate point g, ¥4, z,. The
quantities a, b, ¢, Ty, Yo and 32, are known functions of time.

Let a denote the angle of rotation, It can be verified that

n

oT dz, g
2 Zmi?'ﬁ”’(zi — 20) — ¢ (¥~ Yo)] -+
i=1
Zmi'_{it— at [ (xi —xo)d —(z; _ZO)] 4
i=1 *
~ dzi d
2”’47 at [a(y; — Yo} — b(z; — x0)]
i=1

After the transformations, we can write the condition of invariance of the functions
relative to the family of rotations in the form

dl

(P2 o 10) + (K, 3) = 0, xy = (o050 (3.2)

where K is the vector of angular momentum of the system relative to the coordinate
origin,
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If the constraints allow the rotation of the system about the I -axis as a single
rigid body and the relation (3, 2) holds, then by Theorem 1 we have

djdt (K, 1) = (W', 1) (3.3)

where K’ and M’ denote, respectively, the angular momentum and the total mo-
ment of forces about the point (,, yo, 2,). In other words, if condition (3,2) is sat~
isfied, the theorem on the change of moment of momentum holds for the moving 1 -
axis, If,in particular, the ] -axis does not change its direction in space,i, e,da/dt =
db/dt =deldt =0, the assertion becomes identical to the generalization of
the theorem of areas [3,4].
When the [ -axis passes through the center of gravity of the system, the condition

3,2) can be simplified to
(8.2) can be simplifi (K"i‘)-—-o (3.4)
*dt )T

4. Example from the dynamics of nonholonomic systems, We illustrate the ap-
plication of the assertions proved above by considereing the problem of motion of a
circular disc with a sharp edge along a smooth horizontal ice surface, Thitis equivalent
to imposing a nonholonomic constraint on the system; the constraint being that the
velocity of the point of contact of the disc is parallel to its horizontal diameter, The
disc is assumed dynamically symmetric, and its center of gravity coincides with its
geometrical center,

We introduce the Koenig  Oz,y,z, -axes with the Oz, -axis vertical, In another

Ozyz moving coordinate system the Oz -axis is perpendicular to the disc plane,
the Oz =-axis is horizontal and the Oy -axis passes through the point of contact H.
We denote by M a point on the circumference of the disc, Let m be the mass of
the disc, « itsradius, and 4 , C its moments of inertia about the Oz -, Oy -
and Oz -axes, We also denote the projections of the angular velocity of the disc ©
on the Ozyz-axes by p. 9, r, and projections of the velocity of the mass center on
the same axes by u», v, w, respectively. Projecting the velocity Vg = ¥, -+ [0, OH]
on the axes of a trihedron and using the fact that Vg is parallel to the Oz -axis we
obtain p=0, w—ap=0 (4.1)

We shall prove that r == const,, taking the Oz ~axis as the moving [ -axis.
The constraints allow the disc to rotate about this axis,

Let us show that the condition (3,4 ) holds, Indeed, the projections of K’ on the

Ozyz axes are Ap, Ag, Cr, and those of the vector dl/dt  are ¢,—p, 0 ; hence
they are orthogonal, Since the forces of gravity has zero moment about the 0Oz -axis,
we find from (3,3) that d(Cr)/dt = 0, i.e, T = rp = const.

The constraints allow the disc to rotate about the vertical Oz, -axis, Since O is
the center of gravity, then according to the formuia (3,3) (Koenig's theorem ) the
projection of the moment of momentum relative to the point O on the vertical, is
constant Agsin 0 4 Crecos® =1¢; or (4.2)

Cr,

21
(0= 5o — a1 e®
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The disc can undergo a translational motion along the moving Oz -axis, The
kinetic energy of the disc is not invariant under these displacements,  nevertheless
Lemma 2 can be utilized to yield the equation mdu / dt — mwg = 0 or, together with
(4.1) du/dt— agp = 0. Since p = d8/d¢t, taking into account (4,2) we obtain

oy Cr, .
du—akwAsme*?ctgG)de (4.3)

and hence

) c
u(B):cz—;-iAc—iln’tg—z—w%’lnsinB

The total energy of the disc is conserved
Yom (w0t 4 02 4 w?) + Y, (Ap? + A¢® -+ Cr% - mgasin 0 = &
Taking into account the relations (4,1)- (4,3), we can write the above equation
in the form

, df \2 . m A Crg? (4.4)
5 (A -+ ma?) (-E;-) =h—mgasin 6 — 5 u? (8) — - q3(8}~-T°

and this yields the angle 6 using the method of quadratures,

If ¢ == Cry, then the right-hand side of (4,4 ) tends to —o0 as 6 — 0, .
Consequently in this case we have 0 <0 < n and 6 (1) is a function of time with a
period . It follows, in particular, that the disc can never fall onto the surface ,The
disc can fall when ¢, = Cr,, but only when it is not placed vertically and is released
at zero initial velocity,

Let us assume that ¢; == Cry. Then p, ¢, 7, u, v, w are v -periodic functions of
time. To complete the qualitative pattern of motion we must explain how the angles

¢ between OH and OM and ¢ between Oz and Oz, vary with time,
and to find the law of motion of the point of contact along the surface,

From the kinematic relations

d d d
q =T;psin6, r=7§-+ Eg—)cose

we find that
P=tattfi (0 @ =attfa () (4.5)
where A, and A, are constants depending on the initial conditions and fi, fo  are
v -periodic functions of time,
Let & and n be Cartesian coordinates of the point of contact H on the sur-
face, and let the E, n =-axes be parallel to the Oz, Oy, -axes.Itcanbeshown that

%=ucos¢—§—wsin93in¢+th~(acosﬂsin¢)=(u+acosﬁ %%)cosw

d d
—d—?-=usinlp—wsinecostpw*a-(acosﬂcosw)-—-(u»}—acos() %)sinw

The function » + acos @ dy/det is v -periodicin ¢ . Letus denote it by
g (). Then, taking (4,5) into account we obtain
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dt/dt=g@expli Mz +fH @), =58+ in
The function & (8) exp [if; (] is v -periodic Letusexpanditinto a converging

Fourier series
oo
2nn )
a, exXpii—— t/

—0

Then we have

% a 2nnt
t=c+ Z i(2imj:+ kl)exp (i - ) exp (id,t)

where ¢ = ¢, ic, is a constant, If 2nn/«v - A, =0 for integral n, then

6= iy ()

—Q0

is an analytic v -periodic function, Inthiscase { = & (f) exp (i) 4+ ¢. Letus
introduce a frame of reference rotating with the angular velocity %; about the point
¢, and the point { (z) will undergo a periodic motion along a closed analytic curve
{ = G (1). In the stationary (&, n) ~plane the point of contact will perform a com-
plex periodic motion along a closed analytic curve, rotating in a manner of a rigid
body with constant angular velocity about a fixed point,
The author thanks V, V, Rumiantsev for the interest shown and advice given,
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