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One parameter families of transformations of the configurational space are 
considered, and possible displacements compatible with the constraints im - 
posed on the system, introduced. The D’Alembert-Lagrange principle is 
applied to these displacements to obtain assertions generalizing the funda - 

mental theorems of dynamics and extending the Noether’s theorem to a system 
with nonholonomic constraints. The assertions proved in the paper are used to 

solve a problem of motion of a sharp-edged homogeneous disc on a horizontal 
ice surface. 

1. Generalization of the fundamental theoremr of dynamica. Let us amich a 
mechanical system of n material points of masses mi the Cartesian coordinates of 

which are zi, yi, zi. We assume that the system is under linear constraints which 

are, in general , nonintegrable. Then the possible displacements of the system satisfy 

the relations n 

where the coefficients are functions of the coordinates and time. The points mi are 
acted upon by the active forces Fi whose projections on the coordinate axes are Xi, 
Y it Zi. The actual motions can be found from the D’ Alembert - Lagrange principle 

* 
CPy. 

lTli--$- yi &!li + 
i=l 

d% 
mi dt2 

z - Zi 
> 1 6Zi = 0 

(1.2 1 

Let us consider the time - and parameter a -dependent family of reversible trans- 
formations of a 3n -dimensional configurational space 

ri = ri (x1’, Y1’, Zl’, * . 0, &L’s Yn’, zn’, t, a) (1.3) 

ri = {Xi, Yil zi} 
The velocities of the points of the system are transformed in accordance with the ac- 
cepted rule 

We define 
0.5) 
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as the possible displacements of the system, connected with the family of transfor - 

mations (1.3 ). We shall say that the family of transformations (1.3 ) is compatible 

with the constraints (1.1) if the possible transformations (1.5 ) satisfy the constraint 
equations (1.1). 

Lemma 1. We have the following relation: 
7& 

C( 

(1.6) 

i=l 

n 

T = c 9 rhy + (Yi')" + (C)“l 
f=l 

(where T is the kinetic energy ). The validity of this identity follows from the 

permutation relations : 
d ar. 

-2 8 dri 
dt aa =aadt 

Lemma 2. If the family (1.3 ) is compatible with the constraints placed on the 
system, then 

OX __g=c, ~=~(&~+yi~+Zi~) (107) 
dt 

i=1 

We prove this relation by substituting the possible displacements ( 1.5) into the 

D’Alembert -Lagrange equations and applying the formula (1.6 ), 

The function f (t, x1, y,, zr, . . . , x1’, y,‘, q’, . . .) is invariant under the trans- 
formations (1.3 ) provided that the function g obtained from f by changing the co- 

ordinates and velocities of the points in accordance with (1.3 ) and (1.4), is indepen- 

dent of a. 
Theorem 1. If the kinetic energy is invariant under the property of transfor - 

mations (1.3 ) compatible with the constraints, then 

dSl& = z (1.8) 

Since the kinetic energy is invariant under the family of transformations (1.3)s 
BT / da = 0 and (1.8 ) follows from (1.7 ) . 

The kinetic energy is invariant under the displacements along a fixed directionand 
rotations about a fixed axis. Consequently, in these cases Theorem 1 coincides with 
the classical theorems on the change of momentum and moment of momentum of the 
system [l ] . 

2. The case of potential focct,. We assume that the external forces FI acting 
on the system admit the force function v (t, ~1, I/i, 21, . . . %, &D a,). 

Theorem 2. If the function L = T + V is invariant under the family of 

transformations (1.3 ) together with the constraints, the equations of motion have the 
first integral s = const 
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This assertion follows from the formulas (1. ‘I), and we make use of the formula 

and the invariance of the function L = j” + I/‘: dL / do = 0. 
When the constraints are nonholonomic, Theorem 2 becomes identical with the 

Noether’s theorem [2]. We stress that the family of transformations (1.3) need not be 

a group. 
3. Generrlicrtlon of the horem on determination of momentum and moment 

of momentum. In this section we show when the kinetic energy is invariant under the 
displacements along the straight line 1 defined by the direction cosines a, b, C, which 

can change its direction with time. Obviously, in thiscase the transformation formulas are 

It can be verified that 

ri - ri’ + al, 1 = (a, b, c) 

n 
aT da 

aa=dt c 
il=l 

?I 

c 
i=l 

n 

c dz. 
m.-.L 

1 dt 
i=l 

In this case the condition of invariance of T relative to the family of displacements 
are written in the form (P, dl / dt) = 0 where P is the vector of the momentum 

of the system. If the above relation holds and the constraints allow a translational dis- 
placement of the system along the 1 -axis as a single rigid body, then according to 

Theorem 1 we have II 

&(Pp 1) = (2 Fi, 1) 
i=l 

(3.1) 

We shall also show when the kinetic energy is invariant relative to rotation about 
the 1 -axis which is, in general, movable. Once again we denote its direction co - 

sines by a, b, c and allow 1 to pass through the coordinate point x0, yo, zo. The 

quantities a, b, c, x0, y. and z. are known functions of time. 
Let a denote the angle of rotation. It can be verified that 

n 

f3T 
-= 
au c miz --& [b (pi - ~0) - c (yi -- yo)] -t 

i==l 
n 

c mi,$ & [C (Xi -50) U - (Zi - Zo)] + 
i=l * 

n 

c mi $- & [a (vi - ~0) - b (xi - x0)] 
i=l 

After the transformations, we can write the condition of invariance of the functions 
relative to the family of rotations in the form 

(p, -$ [ro, 11) + (K, $) = 0, r. = iso. YO- 20) 
(3.2 1 

where K is the vector of angular momentum of the system relative to the coordinate 
origin. 
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Xf the constraints allow the rotation of the system about the 1 -axis as a single 
rigid body and the relation (3.2) holds, then by Theorem 1 we have 

~/~t (H;‘, 1) = (M’, 1) (3.3) 

where K’ and M’ denote, respectively, the angular momentum and the total mo- 
ment of forces about the point (z,, ye, z,,). In other words, if condition (3.2 ) is sat - 
isfied, the theorem on the change of moment of momentum holds for the moving 2 - 
axis, If, in particular, the 1 -axis does not change its direction in spacqi. e.da/dt = 

db I dt = dc I dl - 0, the assertion becomes identical to the generalization of 
the theorem of areas [3 ,4], 

When the 1 -axis passes through the center of gravity of the system, the condition 
(3.2 > can be simplified to 

0 (3.4) 

4. &ample from the dynamia of nonhohnomio syrtem8, We illustrate the ap - 
plfcation of the assertions proved above by considereing the problem of motion of a 
circular disc with a sharp edge along a smooth horizontal ice surface, Thisis eguivalent 
to imposing a nonholonomic constraint on the system ; the constraint being that the 
velocity of the point of contact of the disc is parallel to its horizontal diameter, The 
disc is assumed dynamically symmetric I and its center of gravity coincides with its 
geometrical center. 

We introduce the Koenig Ux,y,a,-axes with the Oz, -axis vertical. In another 
OXYZ moving coordinate system the Uz -axis is perpendicular to the disc plane, 

the Ox -axis is horizontal and the Oy -axis passes through the point of contact H. 

We denote by M a point on the circumference of the disc. Let m be the mass of 
the disc, a its radius) and A S C its moments of inertia about the Ox -, OY - 
and Oz -axes. We also denote the projections of the angular velocity of the disc w 
on the 0~~2 -axes by P, 9, rt and projections of the velocity of the mass center on 
thesame axes by u, v, w, respectively. Projecting the velocity V, = V, + [o, OH] 

on the axea of a trihedron and using the fact that V, is parallel to the OS -axis we 

v=O, w-ap=O ’ (4.1) 

We shall prove that r = const . , taking the Oz -axis as the moving .! -axis. 
The constraints allow the disc to rotate about this axis l 

Let us show that the condition (3.4) holds. Indeed, the projections of K’ on the 
oxyz axes are Ap, Aq, Cr, and those of the vector dlldt are 4,--p, 0 : hence 

they are orthogonal. Since the forces of gravity has zero moment about the Oz -axis, 
we find from (3.3 ) that d (Cr) / dt = 0, i. e. r = r. = Con&. 

The constraints allow the disc to rotate about the vertical 02, -axis. Since 0 is 
the center of gravity, then according to the formula (3.3) (Koenig’s theorem > the 
projection of the moment of momentum relative to the point 0 on the vertical, is 
constant 

Aq sin 9 + Cl- cos 3 = cI or (4.2) 

q ((3) = 2--- - 
Asme 

2 ctg 0 
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The disc can undergo a translational motion along the moving Or -axis. The 
kinetic energy of the disc is not invariant under these displacements, nevertheless 
Lemma 2 can be utilized to yield the equation mdu I dt- mwq = 0 or, together with 

(4.1) du / dt - aqp = 0. Since p ---( d8 I’ dt, taking into account (4.2) we obtain 

cr 
du=a (h-3 (4.3) 

and hence 

u(B)=c,+ +Yltg+ -~insin0 

The total energy of the disc is conserved 

i/sm (u2 + ua + w2) + iis (Apa + A pa + C9) + mga sin 6 = h 

Taking into account the relations (4.1)- (4.3), we can write the above equation 
in the form 

=h-mgasin%-- (4.4) 

and this yields the angle 0 using the method of quadratures. 

If cl # Cr,, then the ~ght-hand side of (4,4) tends to --CQ as 6 -, 0, n. 

Consequently in this case we have 0 < 3 < 3t and 6 (t) is a function of time with a 
period t. It follows, in particular, that the disc can never fall onto the surface.The 
disc can fall when c1 = Cr,, but only when it is not placed vertically and is released 

at zero initial velocity, 
Let us assume that cl # 0,. Then p, q, I”, u, v, w are z -periodic functions of 

time. To complete the qualitative pattern of motion we must explain how the angles 
P between OH and OM and 9 between Ox and 0~~ vary with time, 

and to find the law of motion of the point of contact along the surface. 

From the kinematic relations 

we find that 
‘II, = %t I- fl (th ‘p = hat + fa (t) (4.5 ) 

where h and h, are constants depending on the initial conditions and fi, f2 are 

z -periodic functions of time. 
Let E and n be Cartesian coordinates of the point of contact H on the sur- 

face, and let the E, TI -axes be parallel to the 0x1, flyI -axes.It can beshown that 

~=ucos*+wsin0sin$+ -h acosBsin$)= 4 u+acos$x cosq 
I 

~=usin211--sinBcosQ-~(acosOcos~)= 
i 

u + a cos f3 dzlr dt 
) 

sin 11, 

The function u + a cos 3 CM i dt is z-periodic in t . Let us denote it by 

g 0). Then, taking (4.5) into account we obtain 
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d5 ! dt = g (t) exp [I (h,t + fr (t))l, t = E + in 

The function g (rf axP [if1 (61 is z -periodic &et us expand it into a converging 
Fourier series 

Then we have 

2nnt 
5-c+ 2 i(2nn;;+h,)exp $7 ( ) exp (ihIt) 

--oo 

where c = c1 + ic, is a constant. If 2nn /z + hi # 0 for integral n, then 
m 

G,(t) = c an 2nn 
i(2nn/z+h,)exp iY--r i 1 

is an analytic ? -periodic function. In this case c = G (t) exp (ih,i) + c. Let us 
introduce a frame of reference rotating with the angular velocity X1 about the point 

c , and the point 5 (t) will undergo a periodic motion along a closed analytic curve 
; = G (t). In the stationary (5, n) -plane the point of contact will perform a com- 

plex periodic motion along a closed analytic curve, rotating in a manner of a rigid 
body with constant angular velocity about a fixed point. 

The author thanks V. V, Rumiantsev for the interest shown and advice given. 
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